Measurement of microstrains across loaded resin–dentin interfaces using microscopic moiré interferometry

Judy D. Wooda, Paul Sobolewskia, Varun Thakura, Dwayne Arolab, Ahmed Nazarib, Franklin R. Tayc, David H. Pashleyc, \ast

a Mechanical Engineering Department, Clemson University, Clemson, SC, USA
b Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
c Department of Oral Biology, School of Dentistry, Medical College of Georgia, 1120 15th Street, CL-2112, Augusta, GA 30912-1129, USA

ARTICLE INFO

Article history:
Received 6 September 2007
Received in revised form 10 October 2007
Accepted 13 October 2007

Keywords:
Composite
Compression
Dentin
Dentin bonding agent
Mechanical properties
Moiré interferometry

ABSTRACT

Little is known about the mechanical behavior of resin–dentin interfaces during loading. The presence of relatively compliant hybrid and adhesive layers between stiffer dentin and resin composite should deform more during compressive loading.

Objective. The objective of this study was to measure changes in microstrain across bonded dentin interfaces in real time using a recently developed microscope moiré interferometer.

Method. This system used a miniature moiré interferometer, using two CCD cameras for simultaneous recording of longitudinal and transverse deformation fields, a piezotransducer for fringe shifting and use of a microscope objective with magnification up to 600×. Small beams (1 mm × 2 mm × 6 mm) of moist resin-bonded dentin covered with cross-lined diffraction grating replica were placed in a miniature compression tester to allow controlled loading from 2 to 37 N while imaging the interference fringe patterns.

Results. Resin-dentin interfaces created by bonding dentin with Single Bond/Z100, under compressive loading, exhibited comparatively large strains across the adhesive–hybrid interface. When the wrapped phase maps were unwrapped to permit conversion of fringe order to displacements, the 2-D profiles of strain fields revealed non-uniform strains across the adhesive interface. In the adhesive/hybrid layer zone, the negative strain was larger (i.e. \(-6000/\mu m^2/\)) than that seen in the adjacent resin composite or underlying mineralized dentin. The changes were elastic because they disappeared when the load was removed.

Significance. Microscopic moiré interferometry can be very useful in revealing real-time strain across bonded interfaces under load.

© 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Resin–dentin bonding is achieved via removal of some or all of the mineral phase from the top 4–5 μm of mineralized dentin surfaces, followed by infiltration of solvated monomer mixtures into the demineralized region to create a hybrid layer that is about half collagen fibrils and half adhesive resin [1]. The quality of the hybrid layer is determined, in part, by how deep the comonomers can infiltrate into the 4–5 μm deep demineralized zone and if there is any molecular sieving of larger dimethacrylates from monomethacrylate [2,3]. The excess adhesive lying on top of the hybrid layer is called the adhesive...
New techniques need to be developed that allow real-time quantitative measurements of the interfacial properties of bonds made under ideal conditions, versus those made under over-wet or over-dry conditions, or with incomplete polymerization or with residual solvents. These less than ideal conditions produce lower bond strengths, but the mechanisms involved remain unknown. Why do some bonds fail at the base of the hybrid layer? Is it because resin did not infiltrate to the depth of the acid-etch, causing the naked collagen fibrils to undergo more tensile and compressive strain during mastication? Can such strains be measured in vitro during compressive or tensile loading [12]?

One promising technique is moiré interferometry [13–15] where replicas of high frequency (i.e. 2400 lines/mm) cross-lined diffraction gratings are applied to flat cross-sections of resin hard tissue interfaces. Using an appropriate laser, the frequency distribution of the grating on a specimen is compared to a reference grating. Any differences create interference fringes that are proportional to displacement/microstrain in the specimen [13]. The major advantage of moiré interferometry is the potential for simultaneous acquisition of full U and V displacement fields in real-time. However, to measure deformation across 5 μm thick hybrid layers and 50 μm thick adhesive layers, one must be able to image interference fringes that are separated by only 1–2 μm. This requires development of a moiré interferometry microscope [15]. The ability to deliver enough light to the specimen and to construct the microscope in such a manner that one can place a tooth slice in a compression or tensile loading device under the objective lens is a daunting task.

The purpose of the work was to demonstrate the first use of a recently developed moiré interferometry system to measure real-time deformation across resin–dentin interfaces under stepwise compressive loads. The test null hypothesis was that deformation across the hybrid and adhesive layers under compressive load is not uniform.

2. Materials and methods

2.1. Experimental method

A high sensitivity microscopic moiré interferometry (MMI) system was developed to assess the behavior of biological/biomimetic materials at the micro scale. With the use of fringe shifting, this system is theoretically capable of providing full-field displacement data with high resolution. MMI provides the ability for the analysis of full-field material behavior in sections ranging from a few millimeters down to a few micrometers while loading the specimens.

The general optical configuration of the advanced microscopic moiré interferometry system is shown in Fig. 2a. In the system, green light (λ = 514 nm), emitted from an argon laser, enters an objective lens, where it is spatially filtered by a high sensitivity microscopic moiré interferometry system is shown in Fig. 2a. In the system, green light (λ = 514 nm), emitted from an argon laser, enters an objective lens, where it is spatially filtered by a precisely positioned pinhole. The light is then collimated and transferred to a custom-designed fringe shifting device consisting of two 10° glass wedges and a piezoelectric transducer. A 50–50 beam splitter is used for beam separation into U and V fields. After the interference of the polarized beams in a custom-made mini-interferometer (Fig. 2b), the two fringe

Fig. 1 – Schematic showing mineralized dentin (bottom), the hybrid layer (cross-hatched) at the top of mineralized dentin consisting of 5 μm of demineralized collagen matrix infiltrated by adhesive resin that also fills open tubules as resin tags. The excess adhesive resin (grey zone) couples filled-composite (irregular particles) to the hybrid layer. Values are approximate moduli of elasticity and layer thicknesses.
fields are directed through a microscope objective and are then transferred to two CCD cameras (Pulnix, San Jose, CA) via a polarized beam splitter (Fig. 2c). Simultaneous acquisition of the in-plane fields enhances the ability to monitor viscoelastic behavior of specimens.

The resolution of the MMI was enhanced by using double cross-line gratings that created less optical internal reflections than single cross-line gratings. The sensitivity of the developed moiré system is significantly increased through the implementation of fringe shifting. As was previously mentioned, only half of the collimated beam is sent through the wedge setup (Fig. 2d), which provides for beam retardation and allows for fringe shifting when the top wedge is translated by the piezoelectric transducer (PZT). LabVIEW software (National Instruments, Austin, TX) is used for the control of the PZT and the acquisition of the shifted interferograms. This process relies on a five-step phase-shifting algorithm (Schwider-Hariharan) resulting in the computation of a wrapped phase distribution. Finally, the phase maps are unwrapped and displacement/strain is determined.

The design of the micro-mechanical testing apparatus was primarily governed by the intrinsic miniature size of dental
specimens and the necessity for proper hydration levels mandated by biological tissues. Fig. 2e shows the configuration of the loading slots in the developed system. The rectangular nature of the shaft design removes any possibility of relative rotation of the two loading components and permits purely compressive loading. Furthermore, the slot in the upper part of the shaft provides a place for a wet sponge and thus allows for proper specimen hydration during the investigation phase. Fig. 2f shows a schematic of the hydration arrangement. The final arrangement of the compression fixture allows for automated stepwise loading ranging from 0 to 350 N (measured by a miniature load cell [ELFS-T4-100lb. Model, Entran, Fairfield, NJ]) with a compression rate of roughly 0.15 mm/min. The reliability of the developed apparatus was established through experiments on specimens with known mechanical properties. Conducted tests involved materials such as aluminum alloys (6061-T6 and 3000 series), pure lead, and nylon 6,6 in order to properly ascertain the potential range of the constructed system. Beams of these materials were cut to 8 mm × 2 mm × 1 mm (L × W × H). A 2400 line/mm double cross-line grating (Spectrogon US, Inc., Parsippany, NY, USA) was replicated on the top surface of these materials (Fig. 3) using a thin layer (ca. 1–2 μm) cement (M-Bond 200, Vishay Micro- Measurements, Raleigh, NC). These beams were then placed in the compression-loading device and analyzed in the elastic zone. In addition, samples of unbonded mineralized dentin with varying tubule orientation (relative to the loading direction) were also examined in a similar manner. Proper hydration levels were maintained during the entire analysis.

2.2. Tooth preparation and resin bonding

Extracted human third molars were stored in phosphate buffer saline (PBS) containing 0.02% sodium azide at 4 °C until used. The occlusal enamel and superficial dentin of the teeth were removed (Fig. 4a) using a copper blade embedded with diamond particles (Isomet saw, Buehler Ltd., Lake Bluff, IL) irrigated with water, turning at 20 rpm [3,7,11]. The exposed flat tooth surfaces were further ground with 320 grit SiC abrasive wet paper (Ecomet Polisher, Buehler Ltd). The smear layer was removed by applying 37% phosphoric acid gel for 15 s followed by rinsing for 10 s with water. The surface was blotted-dried with cotton pellets to leave a visibly moist surface. Two layers of Single Bond (3M-ESPE, St. Paul, MN) were applied to the moist dentin surface in quick succession, followed by the use of an air stream to evaporate the solvent for 10 s and irradiation with a dental light-curing unit using a halogen bulb delivering light from 390 to 505 nm with a peak output at 470 μm and an energy density of 600 mW/cm² for 20 s [3,7,11,13]. After light-curing the adhesive, two separate 1.5 mm thick increments of a resin composite (Z100, 3M-ESPE, St. Paul, MN) were applied and light-cured for 40 s each (Fig. 1). The teeth were placed in water at 37 °C for 6 months to permit maximum water sorption of the resin composite [16]. Then the bonded teeth were vertically sectioned into 1 mm thick slabs to expose the composite–adhesive–dentin interface (Fig. 4a). Several beams 6 mm × 2 mm × 1 mm (L × W × H) were cut from the center of the bonded interface. The top half of each beam consisted of resin composite and the bottom half was mineralized dentin (Fig. 4a). At the interface of these two dissimilar materials was an adhesive layer about 40–80 μm thick and a hybrid layer about 5 μm thick (Fig. 1). Each beam was briefly polished with 1000 grit SiC to remove any grinding debris. After sonication in water, it was briefly dried with air and a tiny drop of cyanoacrylate (M-Bond, Vishay Micro- Measurements, Raleigh, NC, USA) applied to the surface followed immediately by a polydimethyl siloxane replica of a 2400 line/mm cross-lined diffraction grating that had been sputter-coated with aluminum [13]. This spread the cyanoacrylate into a very thin film. After the cyanoacrylate had set, the polydimethylsiloxane carrier was removed leaving the double-cross aluminum replica of the diffraction grating embedded in the thin layer of cyanoacrylate covering the polished specimen surface (Fig. 3).

By compressing the composite–adhesive–dentin beams with known stresses (2–18 MPa), each of the four materials (composite, adhesive, hybrid layer and underlying dentin) undergo different strains that are proportional to their Young’s modulus. The advantage of the MMI system is that it can measure the deformation of all of the dissimilar materials simultaneously in both x and y planes.

2.3. Finite element modeling (FEM)

A simple finite element model was developed to simulate the deformation field with the resin-bonded dentin beams resulting from compressive loading. The finite element model was developed using a commercial finite element software (ABAQUS, Version 6.6-1) with three-dimensional eight-noded reduced integration point elements (C3D8R). The total model was comprised of approximately 7800 elements and nearly

Fig. 4 – (a) Schematic showing tooth preparation, 1 mm thick slab of resin composite-tooth build-up, and preparation of resin composite-dentin beam specimen. The replica of the diffraction grating covered the entire resin-dentin beam surface. (b) Progressive changes in the fringe patterns across resin-dentin interfaces in response to step-wise increases in compressive strains up to 18 MPa. Note that as the compressive stress increased, the distance between the fringes decreased indicating increased strain in the x or U field. Also, note the lack of fringes and hence strain in the y direction or V field.

3. Results

Using the MMI system, the load-displacement and stress-strain curves for aluminum (6061-T6 and 3000 series), pure lead and nylon 6.6 were linear in the expected elastic zone (data not shown). Both moduli of elasticity and Poisson’s ratios that were measured for these materials were comparable to the well-established properties of these materials (Table 1). Tests utilizing mineralized dentin alone showed that both the modulus of elasticity and Poisson’s ratio are dependent on the orientation of the tubules relative to the applied loading direction (Table 1). The Young’s modulus values for dentin were similar to the values published by others [17].

The utility of the MMI system is in providing full-field deformations across microscopically dissimilar materials in real-time. Fig. 4b shows the progressive changes in fringe pattern across the composite/adhesive/hybrid layer/dentin interface of a single specimen created under ideal bonding conditions (i.e. acid-etched for 15 s, moist-bonding). As the compressive stress increased from 4 to 18 MPa, the fringe patterns come closer together in the U fields, showing that the compressive deformation increased across the bonded interface. These panels image a 200 μm × 150 μm area that covers the bonded interface that is located in the center of the panels. Although microstrain distributions were calculated for every 4–5 MPa increase in compressive stress, only representative images are shown here. Note the lack of compressive deformation in the V field.

In Fig. 5, the wrapped phase maps were unwrapped to permit conversion of displacements into 2-D strain distributions. In Fig. 5a, the strain in the U field (ε_{xx}) is plotted in the x direction across a 400 μm × 300 μm area of a resin-bonded dentin specimen undergoing a compressive stress of 16 MPa. In Fig. 5a, as the bonded interface is approached from the...
Table 1 - Validation of microscopic moiré interferometry system

<table>
<thead>
<tr>
<th>Material</th>
<th>Elastic modulus (E)</th>
<th>Poisson’s ratio (ν)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum 3000 series</td>
<td>Expected 68.9 GPa</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Measured 70.4 GPa</td>
<td>0.32</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Expected 70.2 GPa</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Measured 71.3 GPa</td>
<td>0.33</td>
</tr>
<tr>
<td>Nylon 6,6</td>
<td>Expected 1–6 GPa</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Measured 3.7 GPa</td>
<td>–</td>
</tr>
<tr>
<td>Pure lead</td>
<td>Expected 14.1 GPa</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Measured 14.0 GPa</td>
<td>–</td>
</tr>
<tr>
<td>Dentin 0, 45, 90° tubule orientation*</td>
<td>Expected 20.0 GPa</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Measured 16, 20, 27° GPa</td>
<td>0.26, 0.22, 0.20*</td>
</tr>
</tbody>
</table>

*When measured parallel to the long axis of the dentinal tubules (i.e. 0° difference between direction of loading and direction of dentinal tubules), E = 16 GPa, ν = 0.26. When the load was applied at a direction that was 45° to the tubule direction, E = 20 GPa, ν = 0.22. When the compressive load was applied normal to the tubule direction, E = 27 GPa, ν = 0.20.

resin composite (i.e. left) side, the composite shows a gradual compressive strain that increases from near −150 με to about −3000 με over a 150 μm distance. However, at about 150 μm from the left side, the compressive strain begins to increase rapidly to nearly −6000 με, falls and then rises over the next 100 μm, which corresponds to the adhesive layer. The compressive strain then decreases sharply from −6000 με to approximately −3000 με at 300 μm, and then decreases gradually again over the remaining distance to −1500 με. Note that results from the FEM are also presented in Fig. 5a and b as dotted lines. While exhibiting a consistent spatial distribution in strain as the experimental results, the expected strain per the FEM is considerably smaller. The U-field strain distribution is shown again in Fig. 5b, along with additional finite element results where the elastic modulus of the materials was decreased by 25% from that in Fig. 5a; there is far better agreement in the experimental and FEM results.

In contrast to the U field, there was no distinct strain profile in the V field (not shown). Instead, the strains were randomly distributed. Shear strains were randomly distributed rather than uniform. These strains were elastic because the specimens returned to near zero strains in both U and V fields when the load was removed.

4. Discussion

The results of this study show the utility of the MMI in providing full-field microstrain maps across dissimilar material interfaces in real time. Strains were measured in both U and V fields simultaneously to avoid any effects of creep...
[18] if they were measured sequentially. Unexpectedly, there were non-uniform axial strains across both the hybrid layer and the adhesive layer regions at stresses of 18 MPa which were due to relatively large (~6000 με) compressive strains in the hybrid and adhesive layers/composite junction. These results require acceptance of the test null hypothesis that microstrains across the bonded resin–dentin interface are not uniform.

The near-interface non-linear strain profile seen in the U field across the resin-bonded dentin interfaces, and within the adhesive layer is a new observation. As the compressive stress was uniaxial and uniform along the length of the specimen, the strain should be inversely proportional to the elastic modulus. Therefore, the large negative strain in the resin composite and dentin (near the bonded interfaces) suggests that there has been a reduction in their elastic moduli. The use of lower elastic moduli in the FEM simulation present in Fig. 5b results in better agreement, but there remains appreciable deviation near the interfaces. In the Table 1, the elastic moduli varied from 16 to 27 GPa depending on tube orientation relative to loading. In this study, the tubules were oriented parallel to the direction of loading and gave a elastic modulus of 16 GPa. Previous attempts to measure the stiffness across bonded interfaces by nanoindentation have reported that unfilled resin layers and the underlying hybrid layers have elastic moduli of about 3–4 GPa [8,9]. Even lower values (1.84 GPa) were reported by Katz et al. [10] using a scanning acoustical microscope. Yet, less attention has been placed on the elastic properties of the dentin and resin composite bounding the adhesive layer. Future evaluations of the microstrain distribution across the interface should incorporate a complimentary analysis comprised of mapping the elastic modulus distribution using nanoindentation. Thus, the presence of these relatively compliant materials sandwiched between the resin composite (Z100) and underlying dentin supports our speculation that strain distribution is non-uniform, but there are additional concerns remaining to be addressed.

Even within hybrid layer created by 37% phosphoric acid, there is a gradient of dimethacrylate resin (i.e. Bis-GMA) that has a higher concentration at the top of the hybrid layer, but is almost absent from the bottom of the hybrid layer [2,3] using Single Bond, the adhesive system used in the current study. That is, the bottom of the hybrid layer is thought to be filled primarily with very hydrophilic HEMA that may absorb more water [19] than the top half of the hybrid layer.

The complex relatively large (i.e. ~6000 με) axial strains observed in the U field reveal that Single Bond resin–dentin bonds undergo complex elastic deformations during loading. These may fatigue the structural components of the bonded interface, leading to plastic deformation over time. The relatively large (i.e. ~6000 με) microstrains observed across the resin–dentin interface may involve expression of absorbed fluid [19] from nanometer-sized porosities within these structures that could accelerate leaching of unreacted monomers over time. In addition, Poisson’s effects were evident in the surface strains of the adhesive layer. The experimental U-field strains in Fig. 5 between 150 and 250 με show a concave distribution and results from the out-of-plane deformation or “bulging” of the adhesive resin/hybrid layer complex under compressive stress at the surface; the bulging causes development of a small tensile strain which reduces the magnitude of compressive strain through superposition. Similarly, tensile U-field strains would cause “cupping” of the adhesive layer due to Poisson’s effects. These complex Poisson’s effects could facilitate pumping of absorbed fluids and accelerated degradation of the adhesive. These complex non-uniform interfacial strains may fatigue the structures involved and contribute to the relatively rapid decrease in resin–dentin bonds made with the same adhesive, in vivo [20].

Because microstrains were simultaneously measured in U and V fields, it was theoretically possible to calculate Poisson’s ratios of the materials across the interface. Two problems confound such attempts: Calculations of the ratio of lateral to axial strain assume that the stress is purely axial (σyy) and that lateral stress is zero (σxx = 0). However, plots of du/dy−dy/dx were not uniform. This did not occur in the resin composite or mineralized dentin sides of the bonded interface. Thus, the only uncertainty about Poisson’s ratios is in the middle compliant zone. The second problem is that Poisson’s ratio is a material property, but the hybrid layer is not a pure material but a construct of resin infiltration into a biopolymer network (i.e. collagen fibril mesh). Although dentin has been described as a biological composite, the number of dentinal tubules per mm [21], and the number of lateral branches of tubules varies with location [22] and hence creates different biological composites in different parts of each tooth. Thus, when it becomes possible to measure Poisson’s ratios, they may vary with location. This may complicate FEM attempts to model stress–strain relationships in hybrid layers [23,24].

When the results of our FEM were compared to the actual microstrain results (Fig. 5a and b), the predicted square profile of the compressive strain across the adhesive/hybrid complex was in sharp contrast to the gradual negative and positive slopes that were actually measured across the bonded interface. We speculate that when resin composites are applied to the oxygen-inhibited adhesive resin surface, the adhesive comonomers diffuse into the composite matrix, thereby lowering its filler content and hence its elastic modulus. Additionally, recent work [25] shows that water flows from dentin into the overlying adhesive after bonding. This local water sorption lowers the elastic modulus of the adhesive below its predicted values. Finally, during acid-etching of dentin, 37% phosphoric acid, the acid is thought by some [26] to create a porous zone in the underlying mineralized dentin that may extend 10 μm below the 5–10 μm thick hybrid layer. All of these events may summate to produce graded elastic moduli at the interfaces of these different materials. Finite element modeling is based on interfaces, whereas reality involves interphases that have depth.

The MMI instrument may provide important new information on strain profiles across one-step all-in-one adhesives, two-step self-etching primer adhesives, and etch-and-rinse three-step adhesive systems. While nanoindentation instruments have provided useful information on the mechanical properties of bond interfaces, they give no insight into how these interfaces respond to loading. The MMI instrument can provide such important information.
Acknowledgments

This work was supported, in part, by grant R01 DE014911 from the National Institute of Dental and Craniofacial Research (P.I.D. Pashley). The authors are grateful to Michelle Barnes for secretarial support.

REFERENCES

